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ABSTRACT

A model for ELF atmospheric noise is proposed and studied in detail. The
model is completely described by a few meaningful parameters which are
easily correlated with measnured data. Procedures for fitting the free param-
eters to observed noise data are provided. The model should prove useful in
the analysis and design of communication systems operating in impulsive
noise environments.
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A MODEL FOR ELF NOISE

I, INTRODUCTION

The primary source of electromagnetic noise at ELF (3 to 300 Hz) can be attributed to
lightning discharges which propagate in the earth-ionosphere cavity. As a result, the received
noise at a typical ELF receiving site tends to be impulsive in character even in the absence of
strong local thunderstorm activity, Furthermore, ELF noise has been observed to exhibit

. strong geographical, seasonal, and diurnal dependence so that the observed noise background
can be expected to be non-stationary as well as highly non~-Gaussian. To assess the perform-~
ance of communication systems operating in such environments, it is important to have available
a mathematical model that provides a complete statistical description of the received noise, It
might be added that this requirement exists whether the problem is that of obtaining results on
systewu: performance analytically or by computer simulation. To be useful, any such model must

satisfy the following diserata:

(a) It must agree reasonably well with the underlying physics.
(b) It must be completely describable by a few meaningful parameters,

(c) Its statistical characterization must be easaly correlated with corre-
sponding measured data.

(d) Hopefully it is mathematically tractable,

The present report is one of a series concerned with the development and application of such
a model to ELF communications. In this report we will be concerned with the development of this
model and the fitting of its parameters to observed ELF noise. Other reports in this series will
be concerned with optimum /suboptimum receiver structures and their digital realizations.

Before entering upon a detailed discussion of this model, let us briefly review some of the
pertinent characteristics of ELF noise,

II. CHARACTERISTICS OF ELF NOISE

General observations of wideband ELF noise reveal frequent occurrences of large pulses
superimposed upon a more homogeneous appearing background noise, Typical recorded* H-field
noise waveforms are illustrated in Figs. 1 through 3, We have found it convenient to classify the
recorded noise into the three categories: high, moderate, and low-level, depending upon the
observed spectral levels, An exception is the case of Norway data which appear to be of a uni-
form level. The large pulses present in the waveforms of Figs. 1 through 3 are undoubtedly due
to strong local thunderstorm activity while the background structure, on the other hand, is due
to a considerably greatcr number of unresolved low-level pulses attributed to more remote
thunderstorm activity, As a result, it follows from central limit theorem considerations that
the large number of low-level overlapping pulses resemble Gaussian noise, Considerable de-
partures from this condition are to be expected at larger amplitudes, Indeed, measurements
of the amplitude probability distribution (APD) of ELF noise confirm this, Figures 4 through é
illugtrate the computed APD's corresponding to the noise waveforms appearing in Figs, {
through 3. Here we are plotting the probability or percent of time that the absolute value of the
recorded noise exceeds a given level measured in rms units. The scales have bean chasen so
that the APD of Gausaian noise plots as a straight line of slope —{ as illustrated in Fig. . From

*The details of the measurement and recording system are Jescribed In Ref. 1.
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Fig. 1. Typiccl high-level H-field ELF noise waveform recorded at Saipan,
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Fig. 2. Typical moderate-level H-fleld ELF noise waveform recorded at Malta.
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Fig. 3. Typical H-field ELF noise waveform recorded at Norway,

Figs. 4 through 6 it is to be observed that at low amplitudes the APD does indeed resemble that
of Gaussian noise while exhibiting a much larger dynamic range at larger amplitude levels,

Also of interest are various first-order temporal statistics of ELF noise. We will be par-
ticularly interested in such quantities as the average number of high-level pulses per second and
the distribution of the interval between their occurrences. Unfortunately, such quantities are
difficult to obtain from the recorded data in any unambiguous fashion, Some techniques for the
analysis and measurement of the temporal statistics of ELF noise are described in detail in
Ref. 4. Heré a useful criterion for the presence of a pulse in wideband ELF noise was presented
in terms of three parameters TL, T w and Sc, as illustrated in Fig, 8, The "beginning" of a
pulse is said to have occurred whei the absolute value of the noise waveform first exceeds a
threshold Tu' while the "duration" of guch a pulse i8 measured from this instant until such time
asg the absolute value has been below TL for at least Sc seconds. It is clear that any practical
use of measurements haged upon this criterion will require careful choice of the parameters
TL' Tu‘ and S o Obviously, both Ty, and T“ should be placed just above the background noise
level if such a point can be accurately defined. Often this can be accomplished by obaervation
of the APD plot. The knee of the APD plot, which represents the point of departure from
Gaussian behavior, is in moat cases quite pronounced (Figa. 4 through 6). Suitable thresholds
taken about this point should provide useful information on the iemporal statistica of the high~
level pulses while excluding the low-level background noise from consideration. For definiteness
we have developed the following useful procedure for placement of the threshold levels. First,
draw tangents to the two distinct portions of the APD curve as illustrated by the dashed lines in
Fig. 9. Let T represent the level in rma unita, corresponding to the intersection of these two
lines (T = -6 dB for the high-level Saipan data illustrated in Fig. 9) and set Tu = TL =T, The
choice of S e on the other hand, is not quite so straightforward, Obvioualy, we would like to
make Sc as small as poasible without causing portions of a single noise burst to be mistaken
for two or more resolved pulses., From experimentation, with the noise thresholds set at the

value T described above, we have found values of Sc in the range 5 to 10 maec sufficient.
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Fig. 8. Criteria defining “beginning" and “end" of wideband ELF noise pulse.
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TABLE 1
TYPICAL FIRST-ORDER TEMPORAL STATISTICS OF ELF NOISE

Average Number of Pulses,/Second Average Pulse Duration*
Noise Data Sc = 5 msec Sc = 10 msec Sc = 5 msgec Sc = 10 msec

Saipan

High- Level 12.8 10.4 4.0 7.0

Moderate- Level 10,2 8.2 5.0 8.0

Low- Level 8.0 7.6 6.0 8.0
Malta

High- Levelt

Moderate- Level 11.3 10.8 4.0 5.0

Low-Levelt
Norway 9.3 8.5 3.0 4.0

* Duration is the actual width of the pulse obtained by subtracting the interval S from
the definition of duration in Ref, 1. ¢

T No data available,

Table I illustrates some typical results uasing the above criteria which will be of use to us later.
It is of some interest that these results compare favorably with visual observations,

It should be noted at this time that it is nowhere suggested that the simple first-order am-
plitude and temporal statistics that we have been ~onsidering completely describe ELF noise,
Nevertheless, they are useful in that any proposea model must at least result in statistica which
compare favorabiy with these easily measured quantities.

III. PROPOSED MODEL

An intuitively satisfying model for impulsive noise processes typical of the ELF envircnment
consists of the sum of a low-density* shot pmcessz‘3 and Gaussian noise. The shot process ac-
counts for the randomly occurring high-level pulses while the additive Gaussian noise represents
the low-level background noise, A convenient representation for the shot process is that of a
random impulse train exciting a finite-state linear (usually time invariant) system as first pro-
posed by Synder.4 Thus, we will agsume that the noise processes of interest can be described
by the state equation

() = A x(t) +pu(t) ; x(to) =X, (1a)
and the output relation '
yit) = e, x(t)> ' (1b)

{:,:> denotes an inner product. The gtate vector x(t) is itself an n-vector while the input is a
scalar of the form

where A is a constant n X n matrix, b and ¢ are n-vectors (specifically column vectors) and

N(t)
wt) = ) ut-t) (2)
=t

* By “low~density" we mean that the average inter-arrival time between exciting impuises s greater thon any
system time constants.
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i,e., a point process. Here {N(t), t >0} is a counting process5 with arrival times t!. tz, .e., and

{“l} is a sequence of independent and identically distributed (i.i.d.) random variabies with common
univariate probability density function (p.d.f.) f(-). Finally, the observed noise is given by

n(t) = y{t) +w(t) , (3)

where w(t) is a white* zero-mean Gaussian noise process with double-sided noise spectral ,
density uoz = No/z watts/Hz and assumed independent of the driving point process uit).

While there are many possible state-gpace realizations of the system described by Eq. (1)
leading to the same input-output behavior,b the particular realization that we have adopted

(mainly to agree with Ref. 7) is such that

[ -a, 1 0 . 0] !
~a, 0o 1 . . 0 i
)
. . . ,
A= | . . . . (4) .
. . . . !} :
-a g 0 0 . . . 1
-8 0 0 . . . 0
L n P

while l_:T = (bi’ by, ..ty bn) and finally gT =(c,0,0,...,0). The resulting system transfer func-
tion of the linear dynamical system generating the shot process is easily seen to be given by a
proper rational function simply related to the coefficients of A and b, i.e.,

Ha) & t‘{-’%} =<c, [s1- A1 > }
' [}

b,s™ ! +b, 5" 2 +...b
S 2 -2 (5)
n-4

n
8 +a‘s +...an

where [ is the n X n identity matrix and U(s) and Y(s) are Laplace Transforms in the complex
variable s of the input u(t) and output y{t) of the linear dynamical system. The resuliing state-
space realization is illustrated in Fig. 10. An alternative realization based upon the system
transfer function [Eq. (5)] which will prove useful in later digital implementations can be obtained
by ohsex'ving8 that the matrix [s] - A]" in Eq. (5) has the spectral representation'

e ——— e e

& {(6)

: n
lﬂl‘ér‘ = Z (s = .k
k=1

where the 8y k =1,2,...n are eigenvalues of 4 (poles of the system transfer function) and

* The onalysis is ecsily extended to colored processes.
t We have asumed that the poles of the system tromsfer function are distinet.
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Fig. 10. Two realizations of linear dynamic system. (a) Siate-space realization;
(b) input/output realization,

§k=§%{§ck[s!_ér1 ds ; k=1,2,...n (7

with Ck any closed contour in the complex plane enclosing only the pole at s,. Substituting this
result into Eq. {5), we obtain

DA
He)= ), =% (8)
k=1 k

where

A, = 5 §c . (s~ AT b ds
"

4
His) ds {9)
Il §ck

is simply the residue of H{s) at the pole s,. Thus, Egq, (8) is merely a partial fraction expansion
k .

of the system transfer function.
We will be interested, among other things, in the amplitude probability distribution (APD)
of the process n(t) described by Eq. (3). To this end consider the characteristic function (ch.f,)

of n(t) given by
¥(vitt RE {olVRth

. E (ol¥ < HUD) g (oivith)

il




2y

where we have made use of the assumed independence between the u(t) and w(t) processes.
Letting

YV A E (Wt (11)
and
bvit) & E (V<. XDy (12)
we have
ll)n(v; t) = lng(V) ¢y(v; t) (13)

Note that ¢g(v) is merely the univariate ch.f, of a stationary zero-mean Gaussian process so that

-io :,,2 , (14)

apg(v) =e

where ¢ 02 has been described previously and is independent of t. To evaluate wy(v, t), note that
the solution to (1a) is given by6

t
x0 =gttt xt) + s punar (15)
c

where ¥(t, 7) =exp{ A(t - 7)} is the state transition function, From Eq.{2) this last expression
can be written as

N o S

N(t)
x(t) =@t )xt)+ ) 8t ) by (16)
k=N(t )H
so that finally
‘ N(t)
wg(V; t) = E {expliv {c, §(t. t ) x(t,)>]} E lem[iv Z e, 8(t, ty) .t_z)uk], . (17
k=N(t, )+

Let us give consideration to the evaluation of the gsecond of these expectations. This quantity is
easily seen to be the ch.f. of a random gum of independent although not necessarily identically
distributed random variables, If the counting process {N(t), t >0} is assumed Poisson* with
intensity A, it can easily be ahown5 that

e —

N(t)
t
E ‘exp [iv Z <. &t ) b> “k” = exp,zS [p(v; 1) - 1] d'rl ’
k=N(t )+ : t

B b e e g o

where

@lv; 7) = E {expliv{c, $(t, ) b) u) }

* |t is of some Interest to extend these results to the case of an arbltrary renewal counting process.
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is the ch.f, of the random term appearing in the summation of (14). Here the expectation is
with respect to the only random quantity u so that

ev; 7) = ¢, (v(c, &(t, 7) b)) (20)

with y () the univariate ch.f. of the random amplitudes {ﬂk} possessing common p.d.f. f(- ),
It will be convenient to let

h(t, 7 = e, 2L, MDY (21)

noting that h(t, ¥} = h(t ~ 7) due to the time invariance of 2(t, 7), Indeed, h{t) is easily seen to be

the inverse Laplace Transform of the system transfer function H{s) in Eq. (5) and thus represents .

the impulse response of the linear time-invariant system, . .
Similarly, for the first expectation in (17) we obtain

E {explivde, @t t)) x(t )5} = E {expli¢va’ (t,t ) e, x(t )>]1) 2 it )(vg"(t. tye  (22)
= x(t) V=

with "'x(t )( + ) the multidimensional ch.f. of the initial state vector gt_(to), and where ﬁ*(t, to) de-

notes theoconjugate transpose of the state-iransition matrix. Thus, using the preceding results
in (17), we obtain

. .
wy(V;t) = ¢5(to) (vgr1 (t,t,)c) exp IA S; (¥, (vhit, 7)) — 1] dr, (23)
o

for the ch.f. of the shot component. For a specified distribution of the initial state vector x(t))

and the p.d.f. f(-) of the random amplitude, the ch.f.'s "’x(t&): .) and v“( +) are determiqed. The

eveluation of ¥ _(v; t) is then relatively straightforward, ailt ugh possibly tedious, for apecified

system dynamics. The quantity tl’y(V; t) has been evaluated for some special cages in a previous i .

memorandum.9 '
Also of some interest is the joint ch.f. of the shot component at times ti’ tz with t2 > 1:i

say. By a derivation similar to the above it is easily shown that thig quantity is given by

t
o

t
+ vyhit,, )} - 1] d'r' exp ‘A S;z Wu("zh(tz' 7)) - 1]d‘r' . (24)
1

.

wherey = (vi, v,). This expression can again be evaluated for specified distributions on ;(to)
and u and assigned system dynamics.

It will be convenient in what follows to assume that we will be interested only in times that
are sufficiently far removed from t, so that initial transient disturbances have been dissipated,

For all such times t we have approximately !t(t, t o) ¢ ~0, the null vector so that the following
approximations are valid

i At ¢

{ ]
wy(v;t) ® exp 'A S‘o [9,(vhig)) - 1] d¢ (28)

11
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and

«
¥y (¥ 3ty t)) = exp {x So (v (v n(e) + v hig + 1) - 1) a;,

T
X exp IA So [,(v,h(e)) — 1] d;, . (26) i
where 7 = t2 -ty With y(t) = (g. §(t)) representing the shot component, it follows that
[ ) .
E {y(t)} = AE {u} So h(g) d¢ . (27)
Similarly, we have
- 5
var {y(t)} =AE {u?} S‘o n2(¢) a¢ (28)
and for the autocorrelation function
2.2 - z % ("
R(7) = E {y(t) y(t + 1)} =2°E® {u}) [SO h(§) de] +AE {u }So ) h{g + 7) dg (29)

with corresponding spectral density function

S(w) = 2mA2E2 {u) H3(0) 8(w) + AE {uz}. IBjw) 12, (30)

where H(jw) is the Fourier Transform of hit), i.e., the system transfer function H(s) evaluated
at 8 = jw provided that the imaginary axis is within the region of absolute convergence of His).
Table II summarizes the properties of several linear systems which will be of interest to ug in

SEEIY M.

TABLE Il

MEAN AND VARIANCE OF SHOT COMPONENT
FOR SOME USEFUL SYSTEM TRANSFER FUNCTIONS

. = E ) Var {y(t)}
8_%3.' cg"t u_!(t) _ALE_‘_{E) chE‘[“z]
(s + .Tcr* w* “:t sinwt u_y(t) %-i%%} :(!:E! .,:zi}
‘Ti_(:—);-':)';? ce~® cos wt u_(t) A:ci wu A::‘:Z'i w[“ z’] |

what follows. We will for the most part be interested only in the case where E {u) =0. From
Table II, then, it is 2 simple matter to choose the value ¢ for specified system dynamics to
achieve a given value of y defined by

¥ » var{ge) (31)

%

i.e., y represents the ratio of the rms value of the shot noise component to that of the additive

L s T el
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background Gaussian noise and will prove to be an important parameter of the proposed model.
In summary, then, the parameters of the proposed model which must be specified are:

(a) The p.d.f. f(+) of the pulse amplitudes,

(b} The intensity A of the Poisson point process,

(c) The linear system dynamics,

(d) The ratio ¥ of the rma values of the shot and Gaussian components.

Observe that the choice of background noise level c: is somewhat arbitrary and merely amounts -
to a trivial rescaling of the process n(t). As a result, we will assume coz =4 in what follows,
In the following sections we will discuss the choice of the above parameters to match observed

ELF noise,

IV, DIGITAL REALIZATION OF MODEL FOR ELF H-FIELD NOISE

We will be particularly concerned with fitting the model described in the preceding section
to observed H-field data and obtaining a suitable digital realization of this model. The situation
is complicated somewhat by the fact that the available noise data have been recorded with a loop
antenna, thus measuring the time derivative of the ambient H-field, To compensate for this,
the raw data are processed by a filter with an attenuation characteristic exhibiting a 6 dB/octave
roll-off out to 350 Hz., This approximate integration reconstructs a facasimile of the actual
H-field data. We will approximate this filter by a moving average operation performed on the

o

utt UNEAR DvNamicaL (¥ bd 3 / " er

SYSTEM

(L

wit)
Fig. 11. Mode! of cbeerved H-fleld data,

n(t) process as illustrated in Fig. 411, The resulting process flt) is then related to the n(t)
process of the previous section by

t
A =3 anar . (32)
t-4
This operation can be considered as the convolution of the input n(t} with the impulse response

hlt) = - fu_y (0 -u k-0 (33)

where u_ ‘(t) is the unit step function. The corresponding squared-magnitude response is

given by
o) |2 o [2R28/212 (34)

which is down 3dBat w = w, £ 2.78/5. It is reasonable then to adjust the average interval & to
reault in a "bandwidth® w = 2% X 350 rad/sec.* We will assume then that

* Later studies have indicated that § should be made somewhat larger thaa this value to result in spectral
characteristics which more closely ressmble cheorved ELF H-fleld noise.

13




_ 4 ,2.78
6 = 3z (F55! (35)

in what follows,
The digital simulation of the input/ocutput behavior of the linear dynamical syatem is deter-

mined from the following considerations. Observe that the solution to the state equation (1a) is

given for any t > T by
t
x(t) = &(t, 7) x(7) +‘S‘ 2(t, ) bu(g) de ) (36)
T

where g(t, 7) = exp {A (t - 7)} as has been described previously. Thus, if we are interested
only in the discrete times t = k4, k =0,1,2,..., where A is the sampling interval, we have
upon letting X, = x(kA) the discrete recurrence relation

Bp “Exp tB ey 5 x50 : (372)
Ve =<8 XD (37b)

where F = exp {éA}, and
0 if no impulse occurred in the interval (k4, (k + 1) 4] (38)

Uy = th
u if the i~ impulse occurred at time ti‘ kA < tis (k+1)a

Finally, Ek is defined only for nonzero tTk values as §k =exp{Allk +1) A~ ti]} b. Thus, taking
z-transforms in (37), we have for the discrete transfer function

Hz) = 22 = ¢e, [1-2"'ET1D> (39)
Ul(=z)
where U(z) and Y(z) are the z-transforms of the input and output sequences {\'i'k} and {yk),
respectively, We shall assume that the sampling interval A is smail relative to any time con-
stants associated with the linear system so that* E % b, Again making use of the spectral
represex’xtation8 we have

iy i
z.___k..._ (40)

et
[I"Z F] = - BkA ’
e

k=4 1 ~2
where the 8., k =1,2,...n are again poles of H(s), and the &y ave defined as in Eq. (6) and the
sequel, It follows that the discrste transfer function H(z) can be expreased as

n A
H(z) = ) (44)
-1 %
kxef { -2 " e

with Ak k =1,2,...n, again the residues of H(s) at the distinct poles 8, k=14,2,...n This
is the essence of the impulse invariance technique of digital ﬁltoring‘o and results in a parallel
realization of the discrete system described by (37), In the present study, we have concentrated
upon the three linear systems described in Table II for which the parallel digital realizations

* At any rate, in the digital simulation the impulses occurring of kA <t; £ (k + 1) A will always be placed at the
right=hand boundary of such Intervals so that this approximation Is exact,
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corresponding to (41) are readily obtained. A FORTRAN program for a complete digital simula-
tion of the proposed model has been written and used extensively in this study,

V. CHOICE OF PARAMETER VALUES

The first quantity to be specified for the proposed model is, of course, the p.d.f. f(-)
of the individual pulse amplitudes. In principle, this information could be obtained from the
regults of Section III by computing the APD from the derived expressions for the ch.f, for a
specific choice of f(-) and comparing the results with measured APD's. The difficulty in actually
computing the APD except in special cages, however, precludes this approach. As an alterna-
tive, let us note that the APD at high levels should essentially be determined by the large noise
peaks and hence should resemble f(+ ). Iet us then choose a p.d.f. whose amplitude distribution
at large levels is similar to that observed in measured APD's, We have considered two such
zero-mean distributions which appear to satisfy this requirement: the double-sided power-
Rayleigh distribution defined by

a-1
f‘“”%"rexp {—l"n“—l“} ; o0<as2 (42)
[+
[¢]

and the double-sided log-normal distribution defined by™*

) 2
1 (lnlul - p)
flu) = ———— exp{- . (43)
2NZr o |ul pl 20 l

where p and oz are the mean and variance, respectively, of a Gaussian variate g for which
u=e® In particular, we will assume that p = 0 in what follows. The power-Rayleigh distribution
has a variance R N1 +2/a), where IV-) is the Gamma function while the log-normal distribu-
tion possesses a varia-mce exp{2c } Thus, the power-Rayleigh distribution is completely defined
by the scale parameter Ro and the exponent a. A plot of the resulting APD for the power-
Rayleigh distribution is illustrated in Fig, 12 for several values of a., By comparison with the
high-level region of the measured APD plots given in Figs, 4 through 6, values cf o in the range
0.25 € @ < 0.50 have been found appropriate. Similarly, we have found it useful to characterize
the log-normal distribution by the acale parameter ¢ and the related guantity

E {u®

V, =10 log
d 0
1 Ez { ,u n (44)

= 4.340%

Plots of the resulting APD for several values of V4 are illustrated in Fig. 13. Here it appears
that values of vd in the range 105 V a¥ 15 prove sufficient.

Now let us consider appropriate choices for the intensity A of the point process. This in-
formation can be obtained directly from the data of Table I. For definiteness we will take )\ as
the average number of high-level pulses per second from Table I with Sc = Smeec ag this choice
appears to correlate most favorably with visual observations, Additional information on system

*Each of those distributions can be obtained by forming the random varlable v = pr, whers r has o conventional
one-sided distribution of sither type and p is a random variable taking values £1 with equal prabability,
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Fig. 12. APD of double-sided power-Rayleigh distribution.
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dynamics can be gleaned from Table I. In particular, each of the linear system transfer func-
tions in Table II possesses an impulse response with a well-defined duration (or time-constant)
Tc = 1/a seconds, It then proves convenient in each case to adjust the parameter a to provide
an average pulse duration as given by the measured data in Table . Again for definiteness we
take the average pulse duration with Sc = 5msec as this choice correlates most favorably with
visual observations, For system transfer functions with complex poles, it has been determined
that w~ 2000 rad/sec should prove sufficient in each case considered. Thus, all that remains is
to develop an appropriate rationale for choice of the quantity y given by (34). This in turn fol-
lows easily from consideration of the effect of the parameter y on 2 typical APD plot. As we
have previously chserved, the APD is controlled mainly by the background Gaussian noise in the
small signal regime. Thus, by observing the amount by which the straight-line segments of

the APD plots in the small-signal regime are depressed telow the APD corresponding to Gaussian
noise alone (Fig. 7), we should be able to obtain a rough estimate of ¥, In particular, observe

r/c

r o
L (45)

Jri?

where we have made use of the fact oz = 002(1 + -yz). Thus, the amount by which the APD should

be depressed below that for Gaussian noise alone is given by
- 2
Ayp =10 log, (4 +97) . (46)

It should be noted that this approximation can be expected to hold only for v sufficiently greater
than unity, As an example, comparing Fig, 4 with Fig. 7, it is observed that the low-level
Gaussian segment of the former is depressed by AdB = 13 so that vy = 4.4, In cases where the
approximation fails, resort has been made to visual observation of the resulting APD plots for
choice of v,

Table III indicates the appropriate choice of parameter values for each of the models con-
sidered and has been generated by the above procedure. As an example of the type of results to
be obtained, consider the high-level Saipan data. Figures 14 through 19 illustrate typical noise
waveforms obtained from the proposed model with parameter values taken from Table III. These
waveforms should be compared with that in Fig. 1. Observe that the most favorable visual corre-
spondence is obtained with a linear system possessing a pair of complex conjugate poles. We
have, nevertheless, decided not to neglect entirely the single-pole model as it is felt that this
simplified model may have sowe utility in later studies ~ in particular, in the digital computer
simulation of optimum detector struciures. It has been determined that the resulting APD plots
for the artificially generated ELF noise do not exhibit noticeable differences for the different
linear system used tc generate the shot process, provided that the other parameters remain
fixed. Figures 20(a) and 20(b; ilinstrate the correepcadence between the APD's of artificially
generated and recorded high-level Saipnn data when the parameters of the proposed model are
choscn from Table II1. As can be observed, the correspondence is extremely good. Similar
corresponder.es have been obtained with the Malta and Norway data.

As a final comment, it should be noted that some estimate of the processing gains to be
realized -with typical nonlinear receiver structures operating upon noise as described by this
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Fig. 14. Simulated noise waveform:. single~pole model with power~Rayleigh
distributed pulse amplitudes.
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Fig. 16. Simulated noise waveform: two-pole, single zero model with power-Rayleigh
distributed pulse amplitudes.
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model can be obtained frormn the data of Table I, In particular, consider a detector of the hole~
punching variety with threshold set just above the background Gaussian noise level* The fraction
of signal energy lost in any 1-second interval is approximately A'I‘c which, from the data of

Table I1I, is negligible in each case. The reduction of noise power, on the other hand, is approx-
imately given by AdB as defined in (46), Thus, the processing gain is approximately A4 Which,
in each of the cases considered, has been included in Table III. This estimate comes surpris-
ingly close to the processing gain measured with corresponding recorded noise data,

VI. SUMMARY AND CONCLUSIONS

A model for ELF noise has been proposed and studied in detail. A procedure has been given
for fitting the free parameters of this model to observed noise data. It is felt that the model
satisfies all the diserata listed in Section L Further studies will be concerned with the determi-
nation of optimum/suboptimum detector structures for reception in noise as described by this
model and the evaluation of the resulting performance.

There are several directions in which the proposed model could be generalized to more
closely represent observed ELF noise. For instance, the Poisson point process could be re-
placed by one which would result in some correlation between noise burst intervals as has been
obse.ved in recorded data, Another possibility is to consider linear systems with multiple-
order poles for generating the low-density shot processes. This would result in pulse waveforms
possessing observable precursors which again have been observed in recorded data, Such re-
finements were not undertaken in the present study.
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